Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 3(1): 239, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415243

RESUMEN

In cucurbits, CmWIP1 is a master gene controlling sex determination. To bring new insight in the function of CmWIP1, we investigated two Arabidopsis WIP transcription factors, AtWIP1/TT1 and AtWIP2/NTT. Using an inducible system we showed that WIPs are powerful inhibitor of growth and inducer of cell death. Using ChIP-seq and RNA-seq we revealed that most of the up-regulated genes bound by WIPs display a W-box motif, associated with stress signaling. In contrast, the down-regulated genes contain a GAGA motif, a known target of polycomb repressive complex. To validate the role of WIP proteins in inhibition of growth, we expressed AtWIP1/TT1 in carpel primordia and obtained male flowers, mimicking CmWIP1 function in melon. Using other promoters, we further demonstrated that WIPs can trigger growth arrest of both vegetative and reproductive organs. Our data supports an evolutionary conserved role of WIPs in recruiting gene networks controlling growth and adaptation to stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo
2.
Mol Cell ; 77(5): 1055-1065.e4, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31952990

RESUMEN

In eukaryotes, three-dimensional genome organization is critical for transcriptional regulation of gene expression. Long noncoding RNAs (lncRNAs) can modulate chromatin conformation of spatially related genomic locations within the nucleus. Here, we show that the lncRNA APOLO (AUXIN-REGULATED PROMOTER LOOP) recognizes multiple distant independent loci in the Arabidopsis thaliana genome. We found that APOLO targets are not spatially associated in the nucleus and that APOLO recognizes its targets by short sequence complementarity and the formation of DNA-RNA duplexes (R-loops). The invasion of APOLO to the target DNA decoys the plant Polycomb Repressive Complex 1 component LHP1, modulating local chromatin 3D conformation. APOLO lncRNA coordinates the expression of distal unrelated auxin-responsive genes during lateral root development in Arabidopsis. Hence, R-loop formation and chromatin protein decoy mediate trans action of lncRNAs on distant loci. VIDEO ABSTRACT.


Asunto(s)
Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Modelos Genéticos , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Estructuras R-Loop , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Struct Mol Biol ; 26(2): 96-109, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664740

RESUMEN

The noncoding RNA Xist recruits silencing factors to the inactive X chromosome (Xi) and facilitates re-organization of Xi structure. Here, we examine the mouse epigenomic landscape of Xi and assess how Xist alters chromatin accessibility. Xist deletion triggers a gain of accessibility of select chromatin regions that is regulated by BRG1, an ATPase subunit of the SWI/SNF chromatin-remodeling complex. In vitro, RNA binding inhibits nucleosome-remodeling and ATPase activities of BRG1, while in cell culture Xist directly interacts with BRG1 and expels BRG1 from the Xi. Xist ablation leads to a selective return of BRG1 in cis, starting from pre-existing BRG1 sites that are free of Xist. BRG1 re-association correlates with cohesin binding and restoration of topologically associated domains (TADs) and results in the formation of de novo Xi 'superloops'. Thus, Xist binding inhibits BRG1's nucleosome-remodeling activity and results in expulsion of the SWI/SNF complex from the Xi.


Asunto(s)
Cromatina/metabolismo , ARN Largo no Codificante/metabolismo , Cromosoma X/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Femenino , Ratones , Nucleosomas/genética , Nucleosomas/metabolismo , ARN Largo no Codificante/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Cromosoma X/genética
4.
Nat Commun ; 9(1): 5004, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479398

RESUMEN

The mammalian inactive X-chromosome (Xi) is structurally distinct from all other chromosomes and serves as a model for how the 3D genome is organized. The Xi shows weakened topologically associated domains and is instead organized into megadomains and superloops directed by the noncoding loci, Dxz4 and Firre. Their functional significance is presently unclear, though one study suggests that they permit Xi genes to escape silencing. Here, we find that megadomains do not precede Xist expression or Xi gene silencing. Deleting Dxz4 disrupts the sharp megadomain border, whereas deleting Firre weakens intra-megadomain interactions. However, deleting Dxz4 and/or Firre has no impact on Xi silencing and gene escape. Nor does it affect Xi nuclear localization, stability, or H3K27 methylation. Additionally, ectopic integration of Dxz4 and Xist is not sufficient to form megadomains on autosomes. We conclude that Dxz4 and megadomains are dispensable for Xi silencing and escape from X-inactivation.


Asunto(s)
Genes , Conformación de Ácido Nucleico , Inactivación del Cromosoma X/genética , Alelos , Animales , Línea Celular , Células Madre Embrionarias/metabolismo , Femenino , Eliminación de Gen , Silenciador del Gen , Masculino , Ratones , Factores de Tiempo
5.
Cell ; 174(2): 406-421.e25, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887375

RESUMEN

Mammalian chromosomes are partitioned into A/B compartments and topologically associated domains (TADs). The inactive X (Xi) chromosome, however, adopts a distinct conformation without evident compartments or TADs. Here, through exploration of an architectural protein, structural-maintenance-of-chromosomes hinge domain containing 1 (SMCHD1), we probe how the Xi is reconfigured during X chromosome inactivation. A/B compartments are first fused into "S1" and "S2" compartments, coinciding with Xist spreading into gene-rich domains. SMCHD1 then binds S1/S2 compartments and merges them to create a compartment-less architecture. Contrary to current views, TADs remain on the Xi but in an attenuated state. Ablating SMCHD1 results in a persistent S1/S2 organization and strengthening of TADs. Furthermore, loss of SMCHD1 causes regional defects in Xist spreading and erosion of heterochromatic silencing. We present a stepwise model for Xi folding, where SMCHD1 attenuates a hidden layer of Xi architecture to facilitate Xist spreading.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de los Mamíferos/química , Inactivación del Cromosoma X , Alelos , Animales , Línea Celular , Proteínas Cromosómicas no Histona/genética , Cromosomas de los Mamíferos/metabolismo , Metilación de ADN , Femenino , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Análisis de Componente Principal , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Genome Biol ; 18(1): 131, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28683804

RESUMEN

BACKGROUND: Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level. RESULTS: Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. CONCLUSIONS: By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Ensamble y Desensamble de Cromatina , Cromatina/fisiología , Histona Desacetilasas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inmunidad de la Planta , Flagelina/inmunología , Histonas/metabolismo , Inmunidad Innata , Fosforilación , Estrés Fisiológico
7.
Genome Biol ; 18(1): 114, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619072

RESUMEN

BACKGROUND: Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored. RESULTS: In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms. CONCLUSIONS: These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Hipocótilo/crecimiento & desarrollo , Plantones/genética , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ensamble y Desensamble de Cromatina , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Nucleosomas/genética , Plantones/crecimiento & desarrollo
8.
Nat Rev Genet ; 18(6): 377-389, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28479596

RESUMEN

Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.


Asunto(s)
Cromosoma X/química , Animales , Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X
9.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28420746

RESUMEN

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Asunto(s)
Arabidopsis/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Mitocondrial/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/genética
10.
Proc Natl Acad Sci U S A ; 114(17): 4543-4548, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28404731

RESUMEN

The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells.


Asunto(s)
Epigenómica , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta , Medicago truncatula/genética , Ploidias , Sinorhizobium/fisiología , Perfilación de la Expresión Génica , Medicago truncatula/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
11.
PLoS One ; 11(7): e0158936, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27410265

RESUMEN

Precise expression patterns of genes in time and space are essential for proper development of multicellular organisms. Dynamic chromatin conformation and spatial organization of the genome constitute a major step in this regulation to modulate developmental outputs. Polycomb repressive complexes (PRCs) mediate stable or flexible gene repression in response to internal and environmental cues. In Arabidopsis thaliana, LHP1 co-localizes with H3K27me3 epigenetic marks throughout the genome and interacts with PRC1 and PRC2 members as well as with a long noncoding RNA. Here, we show that LHP1 is responsible for the spreading of H3K27me3 towards the 3' end of the gene body. We also identified a subset of LHP1-activated genes and demonstrated that LHP1 shapes local chromatin topology in order to control transcriptional co-regulation. Our work reveals a general role of LHP1 from local to higher conformation levels of chromatin configuration to determine its accessibility to define gene expression patterns.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genoma de Planta/genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Genómica , Mutación , Conformación Proteica , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Transcripción Genética
12.
PLoS One ; 10(10): e0138276, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26457678

RESUMEN

Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Citocininas/biosíntesis , Transferasas Alquil y Aril/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Cromatina/metabolismo , ADN de Plantas/genética , Epigénesis Genética , Sitios Genéticos/genética , Histonas/metabolismo , Meristema/crecimiento & desarrollo
13.
Trends Plant Sci ; 20(6): 362-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25850611

RESUMEN

Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.


Asunto(s)
Plantas/genética , ARN no Traducido/genética , Transcripción Genética , Metilación de ADN/genética , Epigénesis Genética , Genoma de Planta
14.
Mol Cell ; 55(3): 383-96, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25018019

RESUMEN

The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Proteínas del Grupo Polycomb/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
15.
Plant Cell ; 26(2): 538-51, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24510722

RESUMEN

SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Genes de Plantas , Proteínas de Dominio MADS/genética , Conformación de Ácido Nucleico , Subunidades de Proteína/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Frío , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas de Dominio MADS/metabolismo , Modelos Biológicos , Fotoperiodo , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Polimerasa II/metabolismo , Factores de Tiempo
16.
J Exp Bot ; 65(10): 2677-89, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24497647

RESUMEN

The cell cycle is one of the most comprehensively studied biological processes, due primarily to its significance in growth and development, and its deregulation in many human disorders. Studies using a diverse set of model organisms, including yeast, worms, flies, frogs, mammals, and plants, have greatly expanded our knowledge of the cell cycle and have contributed to the universally accepted view of how the basic cell cycle machinery is regulated. In addition to the oscillating activity of various cyclin-dependent kinase (CDK)-cyclin complexes, a plethora of proteins affecting various aspects of chromatin dynamics has been shown to be essential for cell proliferation during plant development. Furthermore, it was reported recently that core cell cycle regulators control gene expression by modifying histone patterns. This review focuses on the intimate relationship between the cell cycle and chromatin. It describes the dynamics and functions of chromatin structures throughout cell cycle progression and discusses the role of heterochromatin as a barrier against re-replication and endoreduplication. It also proposes that core plant cell cycle regulators control gene expression in a manner similar to that described in mammals. At present, our challenge in plants is to define the complete set of effectors and actors that coordinate cell cycle progression and chromatin structure and to understand better the functional interplay between these two processes.


Asunto(s)
Ciclo Celular , Cromatina/fisiología , Linaje de la Célula , Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Histonas/metabolismo
17.
Plant Cell ; 26(1): 210-29, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24443518

RESUMEN

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/fisiología , Adenosina Trifosfatasas/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Ciclina B/genética , Ciclina B/metabolismo , Genoma de Planta , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
18.
Plant Physiol ; 161(4): 1694-705, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23426196

RESUMEN

Despite considerable progress in our knowledge regarding the cell cycle inhibitor of the Kip-related protein (KRP) family in plants, less is known about the coordination of endoreduplication and cell differentiation. In animals, the role of cyclin-dependent kinase (CDK) inhibitors as multifunctional factors coordinating cell cycle regulation and cell differentiation is well documented and involves not only the inhibition of CDK/cyclin complexes but also other mechanisms, among them the regulation of transcription. Interestingly, several plant KRPs have a punctuated distribution in the nucleus, suggesting that they are associated with heterochromatin. Here, one of these chromatin-bound KRPs, KRP5, has been studied in Arabidopsis (Arabidopsis thaliana). KRP5 is expressed in endoreduplicating cells, and loss of KRP5 function decreases endoreduplication, indicating that KRP5 is a positive regulator of endoreduplication. This regulation relies on several mechanisms: in addition to its role in cyclin/CDK kinase inhibition previously described, chromatin immunoprecipitation sequencing data combined with transcript quantification provide evidence that KRP5 regulates the transcription of genes involved in cell wall organization. Furthermore, KRP5 overexpression increases chromocenter decondensation and endoreduplication in the Arabidopsis trithorax-related protein5 (atxr5) atxr6 double mutant, which is deficient for the deposition of heterochromatin marks. Hence, KRP5 could bind chromatin to coordinately control endoreduplication and chromatin structure and allow the expression of genes required for cell elongation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Endorreduplicación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Ciclinas/metabolismo , Genes de Plantas/genética , Heterocromatina/metabolismo , Modelos Biológicos , Mutación/genética , Unión Proteica/genética , Transporte de Proteínas , Plantones/metabolismo , Activación Transcripcional/genética
19.
Nucleic Acids Res ; 41(5): 2907-17, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23341037

RESUMEN

Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Mio-Inositol-1-Fosfato Sintasa/fisiología , Apoptosis , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Núcleo Celular/enzimología , Ensamble y Desensamble de Cromatina , Citoplasma/enzimología , Metilación de ADN , Epigénesis Genética , Flagelina/inmunología , Expresión Génica , Histonas/metabolismo , Meristema/citología , Meristema/enzimología , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/fisiología , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA